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Organic field-effect transistors (OFET) have recently attracted
considerable attention for electronic applications such as low-cost
integrated circuits and flexible displays.1 Charge carrier mobility,
on/off ratio, threshold voltage, and stability are important key factors
that determine the FET performances.2 Over the recent 20 years,
thiophene oligomers3 and acene molecules4 have been extensively
studied. Recently, tetrathiafulvalene (TTF) derivatives were reported
to exhibit excellent FET performances in single crystals.5 However,
because of the strong electron-donating properties of TTFs, their
thin films are labile to oxygen, resulting in poor FET performances
in thin films.6 To enhance the air stability, decrease of the electron-
donating property is necessary. This is considered to be achieved
by introducing fused benzene rings to the TTF skeleton. Electron-
deficient nitrogen heterocycles such as pyrazine are expected to
further reduce the electron-donating property. Another advantage
of using such fused aromatic rings is to increase intermolecular
π-π interactions, leading to a large transfer integral between
molecules, which is crucial for high carrier mobility.7 Therefore,
we have now fabricated the FET devices of dibenzoTTF1,
dinaphthoTTF2, dipyrazinoTTF3, and diquinoxalinoTTF4 and
have investigated the relationship between the FET characteristics
and structures.

The TTF derivatives1-4 were prepared according to the reported
methods.8 The oxidation potentials were measured by cyclic
voltammetry.9 The first oxidation potentials are as follows: TTF
(0.35 V),1 (0.60 V),2 (0.72 V),3 (1.02 V),4 (1.15 V). Introduction
of fused benzene rings increases the oxidation potentials, and that
of fused pyrazine rings further increases them. Increase of oxidation
potentials means the decrease of the electron-donating properties,
which would enhance the stability to oxygen. The HOMO-LUMO
energy gaps obtained from the end absorptions (in chlorobenzene)
are 2.40, 2.47, 2.44, and 2.11 eV for1, 2, 3, and4, respectively.
Among these TTF derivatives, only2 exhibited photoluminescence
at 413 nm in DMF and at 510 nm in the solid state. The large
difference indicates the presence of strong intermolecular interac-
tions in the solid state of2.

The molecular and crystal structures were determined by single-
crystal X-ray structure analysis. The herringbone-type crystal
structure of compound1 has already been reported.5b Single crystals
of 2, 3, 4 suitable for structural analysis were obtained by slow
sublimation. The dinaphtho derivative2 has herringbone packing
as shown in Figure 1a. An intermolecular short S‚‚‚S contact of
3.62 Å is observed between the neighboring TTF molecules, and
the shortest intermolecular C-H distance is 2.87 Å. The dipyrazino
derivative3 is also packed in a herringbone manner (see Supporting
Information). On the other hand, the quinoxalino derivative4 has
a face-to-faceπ-stacking motif as shown in Figure 1b, where the
interplanar distance is about 3.41 Å and the shortest intermolecular
S‚‚‚S distance is 3.58 Å. The 1,3-dithiole rings are overlapped with
the pyrazine rings, suggesting the presence of intermolecular charge-
transfer interaction which might induce the face-to-faceπ stacking.

The FET devices were fabricated with bottom or top contact
geometry. All the devices showed p-type behavior. The FET
characteristics are summarized in Table 1. The FET performances
of tricyclic systems2 and4 are higher than those of bicyclic systems
1 and3. This is attributed to the more extendedπ conjugation in
the formers. In the bottom contact geometry, the derivatives1 and
2 exhibited high mobilities of 0.06 and 0.38 cm2 V-1 s-1 at room
temperature, whereas the derivatives3 and 4 showed lower
mobilities. At higher substrate temperatures, only the mobility of
4 was increased (0.08 cm2 V-1 s-1 at 80°C). No FET performance
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Figure 1. (a) Cystal structure of2. (b) Cystal structure of4. (Yellow, blue,
gray, and white are sulfur, nitrogen, carbon, and hydrogen atoms,
respectively).

Table 1. FET Characteristics of 1-4 Films

cmpd
device

geometry
Tsub,
°C

mobility,
cm2 V-1 s-1

on/off
ratio Vth/V

1 bottom contact 25 0.06 104 26
2 bottom contact 25 0.38 1.6× 102 10

bottom contact 80 0.22 3.0× 102 10
top contacta 25 0.42 6.0× 103 13

3 bottom contact 25 3.3× 10-5 105 35
bottom contact 50 no gate effect

4 bottom contact 25 1.0× 10-4 106 38
bottom contact 80 0.08 104 25
top contactb 80 0.2 106 36

a With OTS treated SiO2. b With Al2O3 substrate.
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of 3 at 50°C may be attributed to the disorder orientation because
no X-ray diffraction (XRD) pattern was observed. The heterocycle-
fused TTFs3 and 4 have larger on/off ratios than1 and 2,
suggesting that the stability of films is increased by the electron-
accepting units. The higher FET performances of2 and 4 were
obtained from the top contact geometry. For dinaphthoTTF2, the
FET device was fabricated on SiO2 substrate. For diquinoxalinoTTF
4, Al2O3 provided higher mobilities than SiO2.11 Graphs a and c of
Figure 2 show the drain current (Id) versus voltage (Vd) character-
istics for the FET devices of2 and4. The hole mobility of the film
2 calculated in the saturation regime was found to be 0.42 cm2

V-1 s-1 (Figure 2 b). As shown in Figure 2d, the mobility of film
4 calculated in the saturation regime was 0.2 cm2 V-1 s-1, and the
on/off ratio was also a high value of 106. The threshold voltages
of 4 are higher than those of2, which is probably due to the higher
oxidation potential of4. The thin film of 4 did not degrade in air,
and the dependence of the field-effect mobility of4 under the
oxygen pressure was investigated to show the stability. As the
oxygen pressure increases from 10-7 to 760 Torr, the FET
characteristics of the thin films are almost unchanged (see Sup-
porting Information). Under the 760 Torr of O2 pressure, the
mobility was a little increased and the off-current was unchanged.
The stability to oxygen can be attributed to the electron-accepting
property of quinoxaline.

The films of these TTF derivatives deposited on SiO2/Si
substrates were investigated by XRD in reflection mode (Figure
3). Sharp reflections up to the fourth order are observed, indicating
formation of lamellar ordering and crystallinity on the substrate.
The d-spacing of2 obtained from the first reflection peak is
1.76 nm. Since the molecular length of2 obtained from the single-
crystal X-ray analysis is 1.77 nm, this molecule is considered to
stand almost perpendicular to the substrate. On the other hand, the
thin-film XRD pattern of4 deposited at room temperature showed
a d-spacing of 1.406 nm. Since the molecular length of4 is
1.739 nm, the molecules are considered to have ca. 36° declining
orientation on the substrate. Interestingly, when the substrate
temperature is raised to 80°C, the primary d-spacing increased to
1.744 nm which is similar to the molecular length. This change in
the XRD pattern is consistent with the significant change of the
mobility upon raising the substrate temperature (from 1× 10-4 to

0.08 cm2 V-1 s-1).12 AFM images (see Supporting Information)
revealed that the thin film of4 deposited at 80°C consists of
uniformly arranged grains, whereas the thin film deposited at room
temperature has a rough surface. This morphological change is also
consistent with the marked improvement of the FET characteristics.

In conclusion, introduction of aromatic rings to the TTF skeleton
was effective to enhance the intermolecular interactions, leading
to excellent p-type FET performances in thin films. Aπ-stacking
structure was constructed by using electron-accepting quinoxaline
rings, which was also useful to enhance the stability of the FET
device to oxygen. Fabrication of new FETs based on related TTF
and tetraselenafulvalene (TSF) derivatives is currently underway.
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Figure 2. Drain-source current (Ids) versus drain-source voltage (Vds)
characteristics: (a) for a FET of2 on OTS-modified SiO2 (Tsub ) 25 °C);
(c) for a FET of4 on Al2O3 (Tsub ) 80 °C). Id and Id

1/2 versusVg plots:
(b) for the2-FET and (d) for the4-FET. The field-effect mobilities calculated
in the saturation regime are 0.42 cm2 V-1 s-1 for 2 and 0.2 cm2 V-1 s-1

for 4.

Figure 3. X-ray diffraction of films (50-nm thickness) deposited at room
temperature (a) for2 and (b) for4.
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